The Galois module structure of holomorphic poly-differentials and Riemann-Roch spaces
نویسندگان
چکیده
Suppose $X$ is a smooth projective geometrically irreducible curve over perfect field $k$ of positive characteristic $p$. Let $G$ be finite group acting faithfully on such that has non-trivial, cyclic Sylow $p$-subgroups. If $E$ $G$-invariant Weil divisor with $\mathrm{deg}(E)> 2g(X)-2$, we prove the decomposition $\mathrm{H}^0(X,\mathcal{O}_X(E))$ into direct sum indecomposable $kG$-modules uniquely determined by class modulo principal divisors, together ramification data cover $X\to X/G$. The latter given lower groups and fundamental characters closed points are ramified in cover. As consequence, obtain if $m>1$ $g(X)\ge 2$, then $kG$-module structure $\mathrm{H}^0(X,\Omega_X^{\otimes m})$ canonical $X/G$ This extends to arbitrary $m > 1$ = case treated first author T. Chinburg A. Kontogeorgis. We discuss applications tangent space global deformation functor associated $(X,G)$ congruences between prime level cusp forms $0$. In particular, complete description precise $k\mathrm{PSL}(2,\mathbb{F}_\ell)$-module all $\ell$ even weight $p=3$.
منابع مشابه
Riemann-Roch Spaces and Linear Network Codes
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal number of points for curves of their respective genera. Linear network coding transmits information in ...
متن کاملRiemann-Roch spaces of some Hurwitz curves
Let q > 1 denote an integer relatively prime to 2, 3, 7 and for which G = PSL(2, q) is a Hurwitz group for a smooth projective curve X defined over C. We compute the G-module structure of the RiemannRoch space L(D), where D is an invariant divisor on X of positive degree. This depends on a computation of the ramification module, which we give explicitly. In particular, we obtain the decompositi...
متن کاملConstant dimension codes from Riemann-Roch spaces
Some families of constant dimension codes arising from Riemann-Roch spaces associated to particular divisors of a curve X are constructed. These families are generalizations of the one constructed by Hansen [7].
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولGalois Module Structure of Galois Cohomology
Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2023
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2023.05.010